TangloppeTorsdag: Superstore, superdype, superkule?

Av og til skjer de kule vitenskapelige oppdagelsene fordi vi egentlig lette etter noe helt annet.  I 2012 var Oceanlab-gruppen fra univeristetet i Aberdeen i Skottland på tokt nord for New Zealand for å undersøke en av de dypeste undersjøiske områdene som finnes: Kemadec Trench.  Planen var å lete etter dyphavsfisker innen gruppen ringbuker – en av gruppene innen ulkefiskene. Disse fiskene er lette å fange i ruser med åte, og gjengen fra Oceanlab sendte ned ruser og andre feller med fine store fiskebiter av makrellfisker. Da fe fikk fellene tilbake til overflaten var det nok en del ringbuker i fangsten, men det mest spennende – og som gikk verden rundt på nyhetene – var de superstore amfipodene

Kart over havet nord for New Zealand, med Kermadec Trench. Originalkart fra Google maps.

Kart over havet nord for New Zealand, med Kermadec Trench. Originalkart fra Google maps.

Det er ikke mange amfipode-arter som er mye større enn 15mm i lengde. De største vi vet om i norske farvann er Eurythenes gryllus  – de kan bli opp mot 10 cm (100mm) på det største. Amfipodene som ble fanget i fellene fra Kermadec Trench var mellom 10 og 28 cm lange! Det vitenskapelige navnet på beistene er logisk nok Alicella gigantea Chevreux, 1899 – men i media og på nett (til og med i artikkelen som fortalte om funnet) heter de nå bare “supergiant amphipods”. De største individene som er blitt funnet av denne arten er 34 cm lange. Det er uten tvil den største amfipoden som noensinne har blitt funnet.

A Jamieson holder opp et eksemplar av Alicella gigantea. Foto: Oceanlab, U Aberdeen

A Jamieson holder opp et eksemplar av Alicella gigantea. Foto: Oceanlab, U Aberdeen

Det er mange ting som er rart med Alicella gigantea. I tillegg til at den er så kjempestor, har den blitt funnet i tre geografiske områder veldig langt fra hverandre: originalbeskrivelsen er fra Nordatlanteren (utenfor Kanariøyene og Kapp Verde), siden skulle det gå nesten 100 år før den ble funnet ved Hawaii (i det nordlige Stillehavet) og så etter ytterligere 25 år ble den funnet på den sørlige halvkule – i det sørvestre Stillehavet. Genetiske undersøkelser av individer fra alle tre områdene viser at de er helt like! Ikke bare en stor geografisk utbredelse – like imponerende er det vi kaller den batymetriske (eller vertikale) utbredelsen -: hvor grunt og hvor dypt en art lever. A. gigantea har blitt funnet fra 1720 – 7000 m dybde – de dypeste funnene er de fra Kermadec Trench.

Når vi snakker om hvem som lever ved forskjellige havdyp, deler vi havet inn i forskjellige soner. Dyphavet har tre slike soner: den bathyale (fra 1000 til 4000m), den abyssale (4000 til 6000m) og den hadale (under 6000m). Navnet til den bathyal sonen kommer fra det greske ordet for “dyp”: βαθύς. Den abyssale sonen har fått navnet sitt fra det greske ordet ἄβυσσος som betyr “bunnløs” – lenge tenkte man at det var så dypt det gikk an å nå i havet. Den bunnen som finnes i den abyssale sonen er ofte langstrakte flater – vi kaller dette ofte for de abyssale slettene. Det som er dypere enn dette er sprekker og groper i jordskorpen – det er området til den Hadale sonen. Dette navnet kommer fra Hades, den greske guden for dødsriket. Veldig lenge trodde man at det ikke fantes noe liv så dypt – det er veldig mørkt (de siste restene av lys rekker 1000m ned i havet) og trykket som alt utsettes for der nede er enormt.

Selv om det er mørkt, for det meste rimelig kaldt og høyt trykk, lever ganske mange dyr både i den abyssale og hadale sonen – som oftest i begge sonene (kanskje heller ikke slike menneskedefinerte grenser er lette å se under vann). Havstrømmer flytter på vannmassene som store elver som blant annet beveger seg langs bunnen enten den er 5000 eller 6500m under overflaten, og små og ganske store dyr kan sikkert følge med slike strømmer. De fleste virvelløse havdyrene er mer sårbare for temperaturendringer enn endringer i trykk, selv om trykket sikkert også spiller en rolle. Det er mindre tilgjengelig oksygen i vannet jo dypere en kommer. Kjemiske endringer i proteiner og fettsyrer i kroppsvevet kan gjøre at det fremdeles er mulig å ta opp oksygen eller at ikke væskene stivner helt slik at dyret ikke kan bevege seg. Jo dypere vi kommer, jo færre dyrearter og jo færre individer finner vi. En tilpasning til store dyp og stort trykk hos A. gigantea kan vi se ved at de har gjeller på flere bein enn det er vanlig å ha hos amfipodene – dette hjelper nok med å få nok oksygen.

Stillbilde fra videofilming av åte og foto av Alicella gigantea. Figur 2 fra Jamieson et al, 2013.

Stillbilde fra videofilming av åte og foto av Alicella gigantea. Figur 2 fra Jamieson et al, 2013.

Hvis det ikke er så mange som lever her, hva lever de av? Vi mener at en av de største matkildene i både abyssale og hadale dyp er døde andre dyr (gjerne store: hval eller fisk, for eksempel). Åtseleterne som nyttegjør seg slike “matnedfall” (food-falls) er lette å fange eller observere ved hjelp av åte. Alt det andre som kanskje finnes der nede, vet vi mindre om. A. gigantea er en av de som spiser døde andre dyr. På en film av et makrellåte lagt ut på 7000m dyp i Kermadec trench se vi A. gigantea som en hvit kjempe, alle de andre dyr er fisker fra gruppen ringbuk. Forskerne som undersøker slike filmer kan rapportere at det er amfipodene som kommer først – og gjerne i store ansamlinger – noen ganger kan det være umulig å se åtet for bare amfipoder! På den siste videoen kan vi også se mange mindre små hvite prikker som svømmer rundt (i tillegg til flere fisker og en reke) – det er andre amfipodearter som også trekkes av det duftende åtet.

Hvordan er kroppen til disse gigantiske amfipodene? Forskerne fra Aberdeen forteller at de har et stort ytre, men et mye mindre indre! De sammenlignet det å ta på en Alicella gigantea med å ta på en badeand – litt hard og gummiaktig. Inni det store skallet har de derfor god plass til å spise seg mette de gangene de finner mat, og så kan de fordøye maten sakte før de krymper tilbake til en mye mindre indre kropp – mesteparten av skallet blir da bare fylt med vann, og det går lange, tynne musker fra koppen og ut til de bevegelige delene som bein og ryggsegmenter. Det er også tydelig fra filmene at A. gigantea kan sitte i ro og spise uten å bli dyttet bort – sikkert fordi de er så store at de er vanskelige å flytte på – for ikke å snakke om at de er vanskelige å  spise… Ofte var A. gigantea det største dyret som ble filmet over åtet – både fiskene og rekene var mindre og mer pjuskete. I snitt satt de store amfipodene 4,5 timer og spiste, gjerne med hele hodet inni maten – og uten å bevege resten av kroppen.

Det største eksemplaret av Alicella gigantea som ble samlet inn fra Kermadec Trench. Foto: Oceanlab, U Aberdeen

Det største eksemplaret av Alicella gigantea som ble samlet inn fra Kermadec Trench. Foto: Oceanlab, U Aberdeen

I løpet av toktet i 2012 ble det satt ut filmkamere med åte 9 ganger innenfor det dybdeintervallet vi vet A. gigantea finnes. De ble bare filmet på to av disse stasjonene. Dette forteller oss at de nok holder til i tette grupper på mindre områder – vi kaller dette for en “klumpvis fordeling”. Dette er vanlig hos arter som det ikke finnes mange individer av: de må holde seg i rimelig nærhet til i alle fall noen av sine artsfrender, ellers blir det vanskelig å for eksempel reprodusere seg.

Vi kan kanskje summere opp livet til Alicella gigantea som at de kan minne om superkule mafiabosser. For det meste ser vi de ikke, men når de først er der, kommer de i flokk, er store, rolige, og setter seg ned for å spise… “Cool customers” kanskje? De er i alle fall ikke redd for noen.

Anne Helene


Litteratur:

Chevreux E (1899) Sur deux espèces géantes d´amphipodes provenant des campagnes du yacht Princesse Alice. Bulletin de la Société Zoologique de France 24, 152-158.

Jamieson AJ, Fujii T, Mayor DJ, Solan M, Priede IG (2010) Hadal trenches: the ecology of the deepest places on Earth. Trends in Ecology and Evolution 25(3), 190-197.

Jamieson AJ, Lacey NC, Lörz A-N, Rowden AA, Piertney SB (2013) The supergiant amphipod Alicella gigantea (Crustacea: Alicellidae) from hadal depths in the Kermadec Trench, SW Pacific Ocean. Deep Sea Research II 92, 107-113.

Tokt på gamle jaktmarker

Onsdag var vi så heldige at vi fikk overta en dag med R/V Hans Brattstrøm.

Været var i høyeste grad på vår side, så vi dro til en av de mer væravhengige stasjonene på “ønskelisten”; Glesvær ved Sotra, en stasjon som Michael Sars samlet materiale og beskrev arter i fra i sin Beskrivelser og iagttagelser over nogle mærkelige eller nye i havet ved den bergenske kyst levende dyr af polypernes, acalephernes, radiaternes, annelidernes, og molluskernes classer, med en kort oversigt over de hidtil af forfatteren sammesteds fundne arter og deres forekommen (1835). Den er tilgjengelig her.

Snapshots fra en strålende fin dag på "kontoret"!

Snapshots fra en strålende fin dag på “kontoret”!

Vi var i utgangspunktet spesifikt på jakt etter noen av børstemarkartene han arbeidet med, men i god stil tok vi med oss mange (mange!) bøtter med materiale, som kommer pågående prosjekter – og da særlig NorBOL – til gode.

Litt av fangsten: en bøtte med utplukk, nemetea, nudibrancher, sjøstjernen Henricia i rosa utgave (de komme ri mange fargemorfer)

Litt av fangsten: en bøtte med utplukk, nudibrancher og andre snegler, assorterte krabber, nemertea, sjøstjernen Henricia i knallrosa utgave (de kommer i mange fargemorfer), og en Phyllodoce mucosa

Nå jobber vi oss igjennom materialet, og krysser fingrene for at vi finner artene vi var på jakt etter – vi har allerede funnet noen av dem.

-Jon & Katrine

DNA barcoding indikerer høyere artsrikdom i afrikanske Glyceriformia enn hva som er beskrevet

Bilder av noen av de morfologiske karakterene vi undersøker når vi artsbestemmer dyrene

Bilder av noen av de morfologiske karakterene vi undersøker når vi artsbestemmer dyrene

Vi har et stort prosjekt – MIWA – gående på materiale samlet av R/V Dr. Fritjof Nansen langs vestkysten av Afrika.

En av gruppene vi har arbeidet mye med er børstemarkene, og på den 12. internasjonale børstemarkkonferansen i Cardiff dreide flere av bidragene våre seg om ny kunnskap i fra denne regionen.

Gjennom å kombinere tradisjonell, morfologibasert identifisering ved hjelp av den tilgjengelige faglitteraturen og DNA strekkoding ser det ut for at det antakelig finnes mange flere arter av børstemark i familiene Glyceridae og Goniadidae (Glyceriformia) enn hva som er kjent. Vi har lagt ut posteren vår om dette, den finner du her.

TangloppeTorsdag: Eurythenes gryllus (Lichtenstein in Mandt, 1822) -et skjult isfjell?

Hvis vi ser på illustrasjoner av amfipoder er det ofte litt vanskelig å vite hvor store (eller små) de egentlig er – alt virker litt relativt. Den største samlingen av illustrasjoner av amfipoder som finnes i Norge er G.O. Sars sitt 1 bind i serien “The Crustacea of Norway”: det omhandler amfipodene som var kjent da han publiserte verket mellom 1892 og 1895. Her har Sars gjort et sjakktrekk: over hver figur har han en strek som vier hvor langt dyret er i virkeligheten.

Jeg blar ganske ofte gjennom illustrasjonene til Sars, og de har ofte blitt brukt som illustrasjon her i bloggen. Nesten alle “størrelsesstrekene” er rimelig små – som logisk er med den størrelsen som er vanlig. Men – når man kommer til plansje 30 er denne streken plutselig like lang som halvparten av sidens bredde! Vi har kommet til Norskehavets gigant, den røde baron av de dype havområder…

Plate 30, G.O. Sars, 1892. Eurythenes gryllus.

Plate 30, G.O. Sars, 1892. Eurythenes gryllus.

Eurythenes gryllus er blant de tidlig beskrevne artene av amfipoder – den er karismatisk rød og stor, og den er lett å samle i feller med åte. Det siste gir oss informasjon om at her har vi med en åtseleter å gjøre – dette er et dyr som lukter deilig, råtnende fisk, og som kan svømme i ganske raskt tempo til kilden for den deilige lukten. For oss mennesker høres det kanskje ut som en litt ekkel favoritt-mat å ha, men hvordan tror du havet ville sett ut hvis ingen spiste åtsel? Åtseletere er en viktig del av alle økosystemer…

Eurythenes gryllus, fra Weddelhavet i Antarktis. Farge som levende. Foto: C. dUdekem dAcoz

Eurythenes gryllus, fra Weddelhavet i Antarktis. Farge som levende. Foto: C. dUdekem dAcoz

Den røde fargen kommer fra karotener – som de får i seg når de spiser. Dette er den samme gruppen med stoffer som vi kan få i oss når vi spiser for eksempel gulrøtter, og for oss er dette stoffer som er nyttige for synet vårt, blant annet. For dyr som bor på så grunt vann at litt lys trenger gjennom, er røde pigmenter en beskyttelse mot sol – nesten som en innebygget solkrem. Dette gjelder ikke for E. gryllus: den lever dypt nede i havet – fra 750 helt ned til 7800 meters dyp!

På store dyp vil en jevn rødfarge være en god kamuflasje – både fra de aller siste bitene med lys som trenger ned gjennom vannet og fra lys som dyrene der nede lager selv (bioluminisens). Dette er fordi den røde delen av lyset er den første som forsvinner, i motsetning til de blå delene av lyset, som kan trenge så dypt som 1000 m ned i vannsøylen med sine siste lumen.

Det som er spennende med rødfargen til Eurythenes gryllus er ikke bare at den generelt er en god kamuflasje, men at den blir rødere etterhvert som dyret blir voksnere (og større). Hovedgrunnen til dette, er nok at karotenene kommer fra det de spiser, og at de blir samlet opp i kroppen istedenfor å forsvinne med avføring.

Fargeutvikling hos Eurythenes gryllus fra ungdom til voksen. Fig 3c fra Thoen et al, 2011.

Fargeutvikling hos Eurythenes gryllus fra ungdom til voksen. Fig 3c fra Thoen et al, 2011.

Fysiske karakterer (farge er en fysisk karakter) opprettholdes gjennom evolusjonen hvis karakteren  gir bæreren en fordel – og spesifikt hvis de individene som har den karakteren får flere reproduktive avkom enn de innen samme art som ikke har den karakteren. Hva er det med kamuflasje som blir viktigere jo større en blir (hvis vi tenker at en dypere rødfarge gir mer kamuflasje enn en lysere/mer orange)?

Amfipoder har, som alle andre krepsdyr, skjelettet på utsiden av kroppen – et eksoskjelett eller hardt skall. Det betyr at hvis de skal kunne vokse, må de bytte skall, og i begynnelsen er det nye skallet litt mykt – for å gi plass til kroppforøkelsen. For dyr som er åtseletere vil det være vanlig å svømme rundt en lang tid uten så mye mat, for så å finne en stor matmengde samlet på et sted (enten det er en død fisk eller en død hval vil det være mye mat, selv for en amfipode som er 10 cm stor). For å kunne spise seg mett (og mett for en lang tid framover), kan det virke som om Eurythenes gryllus kan starte et skallskifte hvis de kommer til en plass med mye mat. Vi ser dette når vi setter ut feller med åte – det er ofte mange tomme skall i tillegg til store E. gryllus i fellene. Det vil være fordelsaktig å være kamuflert når man er en stor og en liten stund myk pakke med mat som andre dyr kan spise – så for hver forstørrelse vil det derfor gi mening i å bli litt mer mørkerød og kamuflert.

Det med den store størrelsen gjør de voksne dyrene lette å kjenne igjen – eller kanskje heller ikke helt kjenne igjen? Det kan se ut som om vi i 130 år har latt oss fasinere sånn av størrelsen at vi har oversett det meste annet… En studie fra 2015 har for første gang undersøkt arvematerialet til E. gryllus. En av grunnene til at de ville gjøre dette, er fordi E. gryllus har vært et eksempel på en art som er “kosmopolitt” – den har blitt beskrevet som funnet fra overalt der det har vært litt dypt i verdenshavene, bortsett fra Middelhavet og Rødehavet. Til og med slektsnavnet peker på dette: Eurythenes kommer fra et gresk uttrykk for “strukket langt”.

Hva fant de ut i studien? Det viste seg at det vi har trodd at var en art egentlig er 15! Ikke bare det, men de 15 forskjellige artene har klare forskjeller i hvor de holder til – både når det gjelder hvilke dyp vi kan finne dem på, og i hvilke hav vi finner dem. De tre siste artene (beskrevet i år) som har blitt skilt ut fra E. gryllus ble identifisert som forskjellige arter fra resten av Eurythenes-artene på grunnlag av tre ekstra prøver som ble sendt til forskerne som hadde funnet ut at E. gryllus var 12 forskjellige arter!

 

Geografisk utbredelse av de forskjellige artene innen slekten Eurythenes. Fig 3 fra Havermans 2016.

Geografisk utbredelse av de forskjellige artene innen slekten Eurythenes. Fig 3 fra Havermans 2016.

Hvis vi ser på den geografiske spredningen av de 15 artene vi vet om nå, er det lett å se “hvite flekker på kartet” – områder der forskningsgruppen ikke har undersøkt prøver fra (enda). Hvem vet hva som vil finnes i prøver fra en av de hvite flekkene? Det kan virke som om jo mer vi skraper i overflaten på Eurythenes, jo flere arter finner vi.
Jeg skal ikke forutsi at vi vil finne et like stort overflødighetshorn av arter for hver gruppe amfipoder vi studerer, men studier av arvestoffet til artene i kombinasjon med studier av hvordan de ser ut og hvordan de lever har gitt oss stadig større innsikt i mangfoldet… Så kanskje er det flere artsgruppe-isfjell vi bare kjenner toppen på enda?

Anne Helene


Litteratur:

Havermans C (2016) Have we so far only seen the tip of the iceberg? Exploring species diversity and distribution of the giant amphipod Eurythenes. Biodiversity, doi:10.1080/14888386.2016.1172257

Thoen H, Johnsen G, Berge J (2011) Pigmentation and spectral absorbance in the deep-sea amphipods Eurythenes gryllus and Anonyx sp. Polar Biology 34, 83-93.

d´Udekem d´Acoz C, Havermans C (2015) Contribution to the systematics of the genus Eurythenes S.I. Smith in Scudder, 1882 (Crustacea: Amphipoda: Lysianassoidea: Eurytheneidae). Zootaxa 3971, 1-80.

Massiv norsk deltagelse på den 12. internasjonale børstemarkkonferansen

IPC_logo (C) IPC2016Den første uka i august stimlet “polychaetologer” – folk som arbeider med børstemark – i fra alle verdenshjørner til Cardiff i Wales for å delta på The 12th International Polychaete Conference i regi av Nasjonalmuseet i Wales. Vi var i alt rundt 200 deltagere i fra 30 ulike land.

Polychaetologer anno 2016 på trappene til the National Museum i Cardiff © Robin Maggs, Amgueddfa Cymru - National Museum Wales.

Polychaetologer anno 2016 på trappene til the National Museum i Cardiff © Robin Maggs, Amgueddfa Cymru – National Museum Wales.

Cardiff var en flott by, og utgjorde en trivelig ramme rundt vitenskapen (foto: K.Kongshavn)

Cardiff var en flott by, og utgjorde en trivelig ramme rundt vitenskapen (foto: K.Kongshavn)

IMG_3554

Det mangler nåler på noen av de norske her, men vi viste allikevel godt igjen!

Gjennom postere og presentasjoner innenfor temaene Systematics, Phylogeny, Ecology, Methodologies, Biodiversity, Biodiversity and Ecology, Morphology, Reproduction & Larval Ecology, Development, and Polychaete studies fikk folk vist frem hva de arbeider med, og den norske gjengen var godt representert!

Deltagere i fra Universitetsmuseet i Bergen, NTNU, NIVA, The SARS center, NHM Oslo, Akvaplan-NIVA og andre var (med) forfattere på en hel skokk med bidrag.

For å sitere Torkild sin fine bloggpost om konferansen så er “Det helt tydelig at den aktiviteten vi har hatt de siste årene er betydelig og blir lagt merke til. Vi har mange prosjekter i egen regi og har stor egenaktivitet, men ikke minst har prosjektene en betydelig internasjonal deltakelse. I tillegg gir aktiviteten vår muligheter forskere fra hele verden til å besøke våre vitenskapelige samlinger og låne det omfattende materiale prosjektene generer. Det er spesielt gledelig at vi nå er godt synlig på kartet i dette miljøet.”

Noen (!) av posterne de norske delegatene stilte med

Noen (!) av posterne de norske delegatene stilte med

Gjennom bidragene i fra UM (med samarbeidspartnere!) fikk vi vist frem resultater som bygger på både museets eldre vitenskapelige samlinger, og på nyere materiale som det som samles inn gjennom MAREANO og resultatene vi har fått gjennom prosjekter som PolyNor, MIWA og NorBOL. To foredrag med barcoding i fokus ble godt mottatt, og vi har fått mange gode tilbakemeldinger og innspill på disse.

Ansatte ved UM var (med)forfattere på tallrike bidrag, vi står i kursiv her (presenterende forfatter står i fet skrift). Nå jobber vi med det som skal bli artikler i proceedings etter konferansen.

Presentasjoner:

  • Giants vs pygmies: two strategies in the evolution of deep-sea quill worms (Onuphidae, Annelida)
    Nataliya Budaeva, Hannelore Paxton, Pedro Ribeiro, Pilar Haye, Dmitry Schepetov, Javier Sellanes, Endre Willassen
  • DNA barcoding contributing to new knowledge on diversity and distribution of Polychaeta (Annelida) in Norwegian and adjacent waters
    Torkild Bakken, Jon A. Kongsrud, Katrine Kongshavn, Eivind Oug, Tom Alvestad, Nataliya Budaeva, Arne Nygren, Endre Willassen
  • Diversity and phylogeny of Diopatra bristle worms (Onuphidae, Annelida) from West Africa
    Martin Hektoen, Nataliya Budaeva
  • Experiences after three years of automated DNA barcoding of Polychaeta
    Katrine Kongshavn, Jon Anders Kongsrud, Torkild Bakken, Tom Alvestad, Eivind Oug, Arne Nygren, Nataliya Budaeva, Endre Willassen

Postere

  • Diversity and species distributions of Glyceriformia in shelf areas off western Africa
    Lloyd Allotey, Akanbi Bamikole Williams, Jon Anders Kongsrud, Tom Alvestad, Katrine Kongshavn, Endre Willassen
  • Eclysippe Eliason, 1955 (Annelida, Ampharetidae) from the North Atlantic with the description of a new species from Norwegian waters
    Tom Alvestad, Jon Anders Kongsrud, Katrine Kongshavn
  • Phylogeny of Ampharetidae
    Mari Heggernes Eilertsen, Tom Alvestad, Hans Tore Rapp, Jon Anders Kongsrud
  • Ophelina (Polychaeta, Opheliidae) in Norwegian waters and adjacent areas – taxonomy, identification and species distributions
    Jon Anders Kongsrud, Eivind Oug, Torkild Bakken, Arne Nygren, Katrine Kongshavn
  • Pista Malmgren, 1866 (Terebellidae) from Norway and adjacent areas
    Mario H. Londoño-Mesa, Arne Nygren, Jon Anders Kongsrud
  • Lumbrineridae (Annelida, Polychaeta) from Norwegian and adjacent waters with the description of a new deep-water species of Abyssoninoe
    Eivind Oug, Katrine Kongshavn, Jon Anders Kongsrud
  • Nephtyidae (Polychaeta, Phyllodocida) of West African shelf areas
    Ascensão Ravara, Jon Anders Kongsrud, Tom Alvestad
  • Phylogeny of the family Maldanidae based on molecular data
    Morten Stokkan, Jon Anders Kongsrud, Endre Willassen
Delegater i fra norske institusjoner

Delegater i fra norske institusjoner

Konferansen ble twitret ganske iherdig, se @IPC2016 eller #IPC12Cardiff om du vil se mer!

Tusen takk (Diolch!) til arrangørene for et flott arrangement!