Tag Archives: artsprosjektet

TangloppeTorsdag: Amfipodene ved Island

Rhachotropis aff palporum, fra IceAGE prøver. Fig 4 Lörz et al 2008, fotograf AHS Tandberg

Det store tyskledete internasjonale forskningsprosjektet IceAGE undersøker de islandske marine dyrs genetikk og økologi. En stor del av disse er evertebrater, og Universitetsmuseet i Bergen har siden starten vært en viktig deltaker i prosjektet. Mange av våre forskere og studenter er med på å undersøke materiale fra IceAGE samlingene. Amfipodene er en av gruppene vi har vært med på å undersøke, både på workshops og på fagbesøk i samlingene i Hamburg.

Denne uken kom endelig resultatene på trykk. I et spesialnummer av ZooKeys ble 6 artikler delt med verden, og vi er veldig glade for at alt er åpent tilgjengelig for alle (“Open Access”), så alle artiklene kan lastes ned gratis.

Fra Universitetsmuseet i Bergen er vi ekstra glade for å være med på 4 av de 6 artiklene. I den første artikkelen har vi sammenlignet Rhachotropis arter funnet i islandsk og norsk materiale, både morfologi (utseende) og genetikk. Her er mye spennende resultater, og vi lover å komme med en egen TangloppeTorsdag om det om ikke så alt for lenge.

Arten som flyttet slekt. Amphilochopsis hamatus Stephensen, 1925 heter nå Amphilochus hamatus (Stephensen, 1925). Foto: AHS Tandberg

I artikkel to har vi beskrevet en ny art av Amphilochidae, og samtidig har vi ryddet opp i en liten del av slektstreet til Amphilochidae – noe som gjorde at vi “la ned” en slekt, og flyttet den ene arten som hørte til der til en annen slekt. Mye av materialet for denne artikkelen kommer fra BioIce – et tidligere, norskledet prosjekt som også katla marine dyr rundt Island. I tillegg har vi mye norsk materiale som er undersøkt, og mye av DNA-strekkodene som vi har produsert i NorAmph ved hjelp av NorBOL var viktige for å kunne skille artene fra hverandre – det er nemlig ofte veldig små detaljer i utseendet. I denne artikkelen kan man også finne en nøkkel til alle Amphilochidene i nord-Atlanteren.

Nøkkel til alle nordAtlantiske Amphilochidae. Fig 14 fra Tandberg & Vader 2018

Neighbour joining tre av strekkode-DNA fra amfipodene fra IceAGE. De fargete strekene på siden viser mulige spennende områder for videre studier. Fig 2 fra Jazdzewska et al 2018

Den tredje artikkelen omhandler DNA-strekkoder, og det er midt i blinken for NorAmph prosjektet. Nå har vi materiale fra nære havområder som vi kan sammenligne de norske amfipode-strekkodene med. I strekkode-artikkelen fra IceAGE har vi forsøkt å bruke representanter for alle amfipodefamiliene i det islandske materialet. Sammenligninger med våre strekkoder har allerede vist oss mye spennende, og noe av det har vi tatt opp til diskusjon i de to første artiklene.

Den siste artikkelen er egentlig den første – den setter scenen for å kunne diskutere amfipodene rundt Island. Gjennom workshopene har vi identifisert 34 amfipodefamilier i IceAGE-materialet, og artikkelen gir en oversikt over alle familiene – både hvor vi har funnet dem og litt om hvordan de lever (der vi vet noe om det). For to familier – Oedicerotidae og Amphilochidae – har vi identifisert alt materialet til art, og analysene av disse familiene blir derfor mye mer detaljert.

Selv er jeg spesielt glad for å kunne bruke dataene fra BioIce materialet av Amphilochidae som jeg studerte for nesten 20 år siden. De har ligget i en skuff siden da, og skuffen er ikke et godt sted for data man egentlig vil dele med andre forskere.

Innsamlingsstasjonene fra IceAGE der det er funnet amfipoder. De røde stasjonene er med i undersøkelsene videre. Figur 1 fra Brix et al 2018

Norge og Island deler en lang marin grense, og som vi lærte av Harald Heide-Steens Ubåtkaptein fra 1978: “man kan ikke den (nasjonale) grense under vann!” Det gjelder i alle fall for de dyrene som bor under vann. Andre strukturer, som dyp, temperatur, saltinnhold, havstrømmer og historien er nok mye mer begrensende enn våre tegnete streker på kartet – sjekk ut hva vi har skrevet i den fjerde artikkelen! Disse studiene er derfor veldiig relevant for de av våre nasjonale havområder som grenser opp mot Islands områder, og for Norskehavet videre nord fra Island.

Anne Helene


Litteratur:

Brix S, Lörz A-N, Jazdzweska AM, Hughes LE, Tandberg AHS, Pabis K, Stransky B, Krapp-Schickel T, Sorbe JC, Hendrycks E, Vader W, Frutos I, Horton T, Jazdzewski K, Peart R, Beermann J, Coleman CO, Buhl-Mortensen L, Corbari L, Havermans C, Tato R, Campean AJ (2018) Amphipod family distributions around Iceland. ZooKeys 731: 1-53 doi:10.3897/zookeys.731.19854

Jazszewska AM, Corbari L, Driskell A, Frutos I, Havermans C, Hendrycks E, Hughes L, Lörz A-N, Stransky B, Tandberg AHS, Vader W, Brix S (2018) A genetic fingerprint of Amphipoda from Icelandic waters – the baseline for further biodiversity and biogeography studies. ZooKeys 731: 55-73 doi:10.3897/zookeys.731.19913

Lörz A-N, Tandberg AHS, Willassen E, Driskell A (2018) Rhachotropis (Eusiroidea, Amphipoda) from the North East Atlantic. ZooKeys 731: 75-101 doi:10.3897/zookeys.731.19814

Tandberg AHS, Vader W (2018) On a new species of Amphilochus from deep and cold Atlantic waters, with a note on the genus Amphilochopsis (Amphipoda, Gammaridea, Amphilochidae). ZooKeys 731: 103-134 doi:10.3897/zookeys.731.19899

TangloppeTorsdag: pelekreps – trebåteiernes skrekk og havnesjefens mareritt?

Det var værre før. Jeg snakker ikke om 70-tallet da barna måtte gå til skolen selv (og alene), eller 30-tallet da nesten ingen egentlig hadde mat nok, og det var skole også på lørdags formiddag. Den “før” jeg tenker på, er den tiden da alt som skulle bygges og puttes i (eller helst flytende i overkanten av) havet var laget av tre. I det vi så romantisk kaller “seilskutetiden” – og enda før.

Skibbrudd ved den norske kyst. Maleri av IC Dahl 1832, Nationalgalleriet, Oslo. Digital versjon: digitalmuseum.no

Trestokker, tykke høvlete planker og flotte treskip er nemlig for mange dyregrupper som reneste restaurantene å regne. Treet – eller cellulosen – er super næring som flyter rundt i et miljø den ikke er beskyttet fra naturlig. Og der det er mat vil noen ha funnet en måte å utnytte den maten på – i økologien sier vi “det er ingen tomme økologiske nisjer”. Ubehandlet tre blir lett angrepet av tre grupper marine evertebrater.

 

Den største og mest berømte er pelemark (eller skipsorm) Teredo navalis Linnaeus, 1758 – en spesialisert musling som graver seg lange ganger innover i treet. Det sies at angrep av peleorm kunne senke seilskip, og både Christoffer Columbus og Eirik Raude sine amerika-turer har blitt sagt å ha blitt plaget av dem, og båter som holdt lenge til i Karibien ble ofte ekstra plaget. I fjor vår (april 2017) ble det oppdaget en kjempestor ny art av skipsorm fra Filippinene. Den spiser heldigvis ikke skip.

Chelura terebrans sett fra siden. Foto: fra www.aphotomarine.com med tillatelse.

Det er ikke bare spesialiserte muslinger som har oppdaget at ved i saltvann smaker godt. En spesialisert gruppe med amfipoder og en spesialisert gruppe med isopoder frekventerer de samme restaurantene, om enn ofte i litt kaldere vann enn skipsormen. Betegnende nok har de vært så plagsomme også hos oss at vi har norske navn på dem: pelekreps. Av og til brukes også pelelus – og forvirringen er stor om hvilket norske navn som hører til hvilken dyregruppe. (Artsdatabanken bruker pelekreps om amfipodene). Vi skal derfor være vitenskapelige og holde oss med latinske navn: amfipoden Chelura terebrans Philippi, 1839 og isopoder fra slekten Limnuria Leach, 1814.

Selv om dette er TangloppeTorsdag gir det mening å skrive om isopoden sammen med amfipoden her – de finnes nemlig veldig ofte i lag. Små isopoder fra slekten Limnuria (de er gjerne 2-3 mm lange, og flate, som de fleste isopoder) er veldig flinke til å grave hulganger i ubeskyttet tre – de trenger ikke mer enn 24 timer på å lage seg en beskyttet hule der de aller færreste som vil kunne tenkes å ville spise dem klarer å finne dem. Men – Limnuria er ikke så veldig tålmodige – hverken til å lage lange jevne ganger eller til å fordøye maten sin ordentlig. Vår venn Chelura terebrans vet å utnytte dette.

Litt større, og utseendemessig rare Chelura terebrans kommer gjerne når forskjellige arter av Limnuria har gravd tuneller og spist ved en måneds tid. De er nemlig selv ikke så flinke til å grave fort – men de er derimot ganske så nøyaktige når de setter i gang. Siden de har omtrent de samme “fiendene” (de som vil spise dem) som Limnuria (mangebørstemarker og fisk er nok hovedfiendene), kan de ikke oppholde seg i “lettplukkelig” stand på toppen av glatt og nytt treverk – de må ha beskyttelse av en hulgang eller en dyp grøft.

Der Limnuria har gravd smale hulganger sniker nå voksne (gjerne “gravide” hunner, men også voksne hanner) seg inn, og så begynner de å polere videre på gangene – lage de dypere og videre. De spier gjerne bort taket på hulene, slik at dype furer står igjen, og disse furene blir etterhvert til kaotiske nettverk. Overflaten på pelekreps-angrepet tre kan nesten se ut som filigrans-arbeid, eller vi kan finne en ny mening i nasjonalsangens line “furet, værbitt”.. Da blir det lettere å forstå hvordan store, stolte seilskip kunne bli stadig saktere i sjøen før de begynte å falle fra hverandre. Sammen med skipsormene er pelekrepsene (både isopodene og amfipodene) medvirkende årsaker til at gamle skipsvrak ikke blir så veldig gamle mange steder.

En trebit, slik overflaten kan se ut etter at Chelura terebrans har bodd der en stund. Foto: fra www.aphotomarine.com med tillatelse.

Nede i furene sine gnager altså Chelura terebrans seg sakte og nøyaktig rundt. Ungene, som fort etter første “angrep” av trebiten tar over i antall for de voksne, holder til i de inderste, trangeste delene, og alle spiser de som besatt. Ikke bare av treet, men også sin egen avføring, og avføringen til Limnuria, sånn at de får tak i alt som ikke ble fordøyd første gangen. For treverk – cellulose, lignin og resin for det meste – er hardfordøyelig mat. Det trengs spesielle mager for å klare å få noe særlig ut av den.

En liten samling Chelura terebrans fra en liten trebit innsamlet i en vik i Cornwall, UK. Foto: fra www.aphotomarine.com med tillatelse.

Detaljerte studier av hele spisesystemet til C. terebrans – fra munnen til anus – avslører at de flere steder gjennom spiserør-mage-tarm kan knuse cellulose-cellene litt mer, slik at væskene som ellers er i tarmen kan komme til og gjøre sitt for fordøyelsen. Innsiden av tarmen har tett-i-tett med små hår som lett lar maten gli en vei, mens det er nesten umulig å gå opp igjen, og flere steder finnes hårkroner som danner matfiltre der bare passe knust mat kan komme videre. I motsetning til hva alle har trodd, har C. terebrans derimot ikke en spesiell cellulosenedbrytende bakterieflora i tarmen sin. Det de har istedenfor, er mengder av forskjellige ensymer som kan bryte ned trevirke, så de er en liten kjemisk vednedbrytningsfabrikk hver og en av dem.

Når Chelura terebrans først har funnet seg en bit med treverk i saltvann – enten den er en påle for en kai eller et stort skipsvrak, blir det fort mange av dem. En av strategiene de holder seg med er å passe på befruktete egg fra sine Chelura terebrans-naboer. Det er vanlig å finne en hunn med egg i forskjellige utviklingsstadier i samme rugepose – en ekte surrogatmor, altså. Dette hjelper nok til at flere egg overlever, og slik kan de fort ta over en stor trebit.

Treverk etter flere måneder med Chelura terebrans . Figur 3.4 fra Etaxbe 2013.

Det har aldri vært noe avslappende liv å være trebåteier. Det skal pusses og lakkes og oljes og tjæres. Slik har det “ alltid vært” – og i småbåthavner landet rundt er det slik en kjenner trebåteierne fra resten – de som kan gjøre båtvasken med en litt god svamp. Båteierne tenker kanskje all pussingen og lakkingen er for at det skal se pent og blankt ut, men de holder pelekrepsen unna samtidig.

En av de tidlige illustrasjonene av Chelura terebrans (stavet feil i den originale figurteksten). Legg merke til de to store og uvanlig formete uropodene. Bate & Westwood, 1862.

Den økte beskyttelsen vi gir hver lille trebit som skal i vann – enten det er med trykkimpregnering, tjære, lakk eller metallbeslag – gjør at det blir vanskeligere for Chelura og Limnuria å finne fotfeste. Tidligere reiste disse artene rundt i verden med seilskipene, og vi finner i dag Chelura terebrans på begge sider av NordAtlanteren, Sør Afrika, Stillehavskysten av Nordamerika, Australia og New Zealand. Ingen ser på den som “opprinnelig derfra”, så i alle disse områdene er den listet som en fremmed art man gjerne vil bli kvitt. Det er ikke noe underlig at alle vil bli kvitt en art som lett gjør store materielle skader på ting. Det kan virke som om vi får det til. Det er en tydelig nedgang i mengden Chelura terebrans og de andre trespisende krepsdyrene i undersøkte havner. Kanskje vil de ta mer over drivtømmer og slitne båtvrak?

I Norge har vi noen svært få registreringer av Chelura terebrans – fra Østfold, Rogaland og Hordaland. Alt i alt har vi så få registreringer at forrige rødliste (2015) konkluderte med at vi ikke kunne si noe særlig, for vi har datamangel (kategori DD).

Anne Helene


Litteratur:

Barnard JL. 1955. The wood boring habits of Chelura terebrans Philippi in Los Angeles harbour. Essays in the natural sciences in honour of captain Allan Hancock: 87-98

Beermann J, Dick JA, Thiel M. 2015. Social recognition in Amphipods. An Overview. Ch. 6 in Aquiloni L , Tricarico E (eds) Social Recognitions in Invertebrates. Springer International Publishing

Etaxbe AG 2013. The Wood boring amphipod Chelura terebrans. PhD-thesis, University of Portsmouth, UK. 232 pp

Kühne H, Becker G. 1964. Der Holz-Flohkrebs Chelura terebrans Philippi (Amphipoda, Cheluridae). Zeitschrift für angewante Zoologie, Beiheft 1: 1-141

Reisch DJ, Gerlinger TV, Ware RR. 2015. Comparison of the Marine Wood Borer Populations in Los Angeles Harbour in 1950-1951 with the populations in 2013-2014. Bulletin, Southern California Academy of Sciences 114(3): 123-128.

TangloppeTorsdag: Apherusa glacialis (Hansen, 1888)

Lange tråder av isalgen Melodira arctica. Foto: I.A. Melnikov, hentet fra www.noaa.org

Lengst mot nord på kloden er havet så kaldt at det er dekket av sjøis hele året. Saltet i havvannet gjør at vannet ikke fryser ved 0 grader C slik vi er vant til med regn som blir til snø – jo saltere vann, dess kaldere må det bli før det fryser. Polhavet er rundt 35 promille salt (arktisk vann er litt under 35 promille, mens atlantisk vann er pittelitt over 35 promille), og da fryser havet når det blir mellom -1,8 og -1,9 grader C. Som en del av prosessen med å bli sjøis skilles saltet sakte ut fra isen, så gjennom isen renner seige små bekker av kjempesalt vann som til slutt drypper ned fra isen og synker ned gjennom vannmassene – saltvann er tyngre enn vann uten masse salt i seg. Isen – og spesielt is som er dekket av snø – reflekterer tilbake mesteparten av sollyset som skinner på den om sommeren, så selv i de lyse sommermånedene kan det være skumringstilstander like under islaget.

Sjøisen er altså et ganske ugjestmildt bosted. Allikevel finner vi en del dyr som holder til der hele eller deler av livet sitt. Mest berømt er nok amfipoden Gammarus wilkitzkii, og hvis vi veier alle dyrene vi finner under isen, vil alle G. wilkitzkii nok veie mest – men så er de også størst. Sannsynligvis like mange i antall – men veldig mye mindre i størrelse og vekt er dagens helt: Apherusa glacialis (Hansen, 1888).

Apherusa glacialis er 5-8 mm lange og nesten gjennomsiktige til vanlig. Akkurat det med fargen skal vi komme tilbake til. De er avhengige av isen i alle faser av livet, og vi regner med at de i alle fall lever 2 år – kanskje så mye som 3. Det er ganske vanlig for arktiske amfipoder – det tar tid å vokse seg “stor” når vannet er kaldt og det tidvis er lite mat å finne. Dette er amfipoder som er vegetarianere – undersiden av havisen er et yndet voksested både for en gruppe små encellete enkelt-alger vi ofte tenker på som “isalger” – og noen algearter som lager lange tråder.

Alger trenger sollys for å kunne leve og vokse, og så langt nord blir årstidsvariasjonene ekstra skarpe – både temperatur og spesielt lys endrer seg veldig mellom sommer og vinter. Om sommeren er det sol 24 timer i døgnet, mens om vinteren er det ikke noe sollys i det hele tatt. Ozonlaget er tynnere langt nord – det berømte “ozonhullet” – og det gjør at flere UVstråler i sollyset slipper ned til oss. Målinger viser at slik stråling kan trenge så langt som 30 meter ned i vannmassene om det er klart nok vann.

Algedekke under havisen farger underflaten gul. Noen alger lager lengre tråder. Foto: Andrew Thurber (Wikipedia; Deep-Sea and Polar Biology. A research blog about polar and deep-sea research.)

Vi lærer tidlig at det er viktig å passe seg mot for sterkt sollys. Det er spesielt UVstrålene i sollyset som er skadelige, og vi vet nå at for mye UVstråling kan skade arvestoffet DNA. Det kan virke som om Apherusa glacialis har en god metode for å beskytte seg mot skadelig UVlys. De har nemlig det vi kaller for kromatoforer over hele kroppen sin, til og med på noen av de indre organene. Kromatoforer er pigmentceller som kan endre fasong og størrelse. Dette skjer ikke bare uten videre – slike endringer er kontrollerte, og de krever mye energi fra dyret som har dem.

Kromatofor-størrelser fra helt sammentrukket til helt utstrakt. Streken er 1 mm lang. Fig 2 fra Fuhrmann et al 2011

Dykkere under havisen har lagt merke til at de Apherusa glacialis som satt nærmest kanten av isen, eller der isen var ny og tynn ofte så mørkere ut enn de som satt lengre inne under isen der det var mørkere. Vi kan lett tenke oss at det er lurt å være lys – kanskje nesten gjennomsiktig, for A. glacialis er god mat for polartorsken. Polartorsk ser etter maten sin, så mørke dyr vil være mer synlig mot den lyse isen enn lyse og gjennomsiktige dyr. Når vi samlet inn dyr til forskningsskipet, så vi at både de lyse og de mørke A. glacialis var helt like bortsett fra at de mørke hadde mye større kromatoforer.

a) Apherusa glacialis som sitter like på undersiden av kanten på et isflak b) Apherusa glacialis som sitter 15 m inn under isflaket. Begge foto E Svendsen, Fig 1 fra Fuhrmann et al 2011.

En gruppe forskere ved universitetsstudiene på Svalbard tok derfor med seg Apherusa glacialis på laben og testet hvordan kromatoforene endret seg – var de påvirket av UVstråling, spilte bakgrunnen de satt på noen rolle, og gjorde det noe om det var varmt eller kaldt i vannet?

Resultatene viser at det er UVstrålingen som gir endring. Mye lys gjorde at dyret ble mørkere., allerede etter så kort tid som et kvarter. Vi kan altså tenke på kromatoforene som en slags “solfaktor” mot skadelige UVstråler. De kan trekke pigmentcellene sammen igjen når det ikke er så mye lys, sånn at de kan bli hvite og nesten gjennomsiktige igjen og unngå å bli sett av polartorsken og andre som gjerne vil spise dem, og kanskje spare litt energi.

En Apherusa glacialis som er DNA strekkodet ved Universitetsmuseet i Bergen. Etter fiksering i sprit er ingen kromatoforer synlige. Foto: AHS Tandberg

På Universitetsmuseet i Bergen har vi gjennom NorBOL prosjektet DNA strekkodet en del forskjellige Apherusa-arter, og blant dem Apherusa glacialis. Apherusa er en slekt der vi vet om 11 arter i norske farvann (hvis vi tar med Svalbard). Det er ikke en lett gruppe å skille fra hverandre, så et strekkode-bibliotek vil forhåpentligvis hjelpe identifisering for andre forskere.

Anne Helene


Litteratur:

Fuhrmann MM, Nygård H, Krapp RH, Berge J, Werner I 2011. The adaptive significance of chromatophores in the Arctic under-ice amphipod Apherusa glacialis. Polar Biology 34: 823-832.

Lønne OJ, Gulliksen B 1991 On the distribution of sympagic macro-fauna in the seasonally ice covered Barents Sea. Polar Biology 11: 457-649.

Werner I, Auel H 2005 Seasonal variability in abundance respiration and lipid composition of Arctic under-ice amphipods. Marine Ecology Progress Series 292: 251-262.

TangloppeTorsdag: Melphidippidae – lange, tynne og piggete

Bakkroppen til Melphidippa macrura GO Sars, 1894. Uropodene (halebeina) er delvis knekt i innsamling. Foto: AH Tandberg

Melphidippidae er en familie amfipoder med kjempelange tynne bein (bortsett fra de to fremste, som er små og ikke særlig kompliserte), og det som i originalbeskrivelsen ble kalt en “armert bakkropp”. At bakkroppen er “armert” betyr ikke at noen har brukt ekstra armeringsjern mens de ble støpt, men heller at bakkroppen er bevæpnet med lange pigger eller sagtakkete kanter. Det er disse bevæpningene sammen med en generelt langstrakt og slank hovedkropp vi vanligvis kjenner Melphidippidaene igjen på; de lange beina og de lange antennene faller lett av når vi samler dem inn – selv om vi prøver vårt beste å være forsiktige.

Melphidippa macrura GO Sars, 1894. Et relativt nyinnsamlet individ som enda har noen bein i behold… Foto: AH Tandberg

De lange, tynne beina er kanskje en tilpasning til å leve på bløt bunn? Vi vet ikke helt, men det vi vet er at de artene vi har observert, er det vi kaller passive suspensjons-spisere. Det betyr at de står i ro og samler de små matpartiklene som faller ned på dem, så litt som kusken i Tre Nøtter til Askepott samler de det som detter på nesen deres… Hittil har vi også bare samlet inn Melphidippidae fra finkornete havbunner som sand eller sandblandet mudder.

Enequist, som studerte amfipodene i Skagerrak på 40-tallet skriver at Melphidippidene er de eneste artene han hadde i akvarier som stod helt knusk i ro på bunnen (eller oppover kantene i akvariet) og spredte ut det de hadde å samle med i helt rolig vann. De fleste andre som fisker med hårete antenner og bein trenger at det er en viss bevegelse i vannet som kan ta maten forbi dem. Melphidippidaene legger seg derimot på ryggen, bretter inn bakbeina, og sprer ut antennene og beinpar 3 og 4 i en liten rosett, og så venter de til maten faller ned på dem. Et ganske behagelig liv!

Enequist tin illustrasjon av hvordan Melphidippella macra står/ligger og spiser. a) fra siden, b) sett ovenfra – legg merke til hvordan 3 og 4 beinpar sprer seg ut sammen med antennene som matfangere. Ill: P Enequist, 1949

Forskere som har undersøkt Melphidippidae fra Antarktis har funnet ut at mageinnholdet for det meste bestod av små planktonbiter og litt rester av andre krepsdyr – og av og til fant de den antarktiske Melphidippa antarktika i feller der de samler åtseldyr, så det er mulig at de en gang i blant blir lei av å vente på nedfallsmaten. En annen ting de fant ut, var at magedelen av tarmen var veldig kort – så de har ikke noe mulighet til å ha et lite matlager der hvis det blir tynt med mat i vannet. Dette er ellers mer vanlig hos åtseletere, så det er kanskje en pekepinn på et blandet matfat?

Det er lett å tenke at de må være noen slappfisker siden de for det meste sitter helt stille på havbunnen og venter på at maten skal falle på dem. Men Enequist skriver at de er raske svømmere hvis de først begynner å svømme – noe som kan passe med at de går etter store nedfalne matrester som andre åtseldyr.

Den av våre tidligere innsamlete Melphidippa macrura som har flest bein igjen. Når vi legger små krepsdyr på sprit blir ytterskallet lett å knekke, og med få muskler til å holde fast lange, tynne bein og antenner knekker de av fort. Foto: AH Tandberg

Nesten alle Melphidippidae holder til i kalde farvann. I Norge har vi 5 arter: fire som holder til ved fastlandet, og en nybeskrevet femte (og to av de fire andre) holder til rundt Svalbard og i arktis. Alle har laaange, tynne bein, pigger på ryggen, og masse hår på antennene. De er med i NorAmph sitt arbeid med DNA strekkoding, men det er ikke lett å finne dem alle.

Til nå har vi samlet inn og strekkodet det vi tror er 3 forskjellige arter, men det kan se ut som om det er store genetiske forskjeller innenfor den ene arten i alle fall. Kanskje er det detaljer som skjuler seg på de beina som alltid knekker av? Vi samler inn mer for å se om vi kan løse opp i det!

Anne Helene


Litteratur:

Boeck A (1871) Crustacea Amphipoda Borealica et Arctica. Videnskaps selskabs forhandlinger, Kristiania 1870. 1-1222

Dauby P, Scaliteur Y, DeBroyer C (2001) Trophic diversity within the eastern Weddell Sea amphipod community. Hydrobiologia 443, 69-86.

Enequist P (1949) Studies on the Soft-Bottom Amphipods of the Skagerrak. Zoologiska Bidrag från Uppsala 28, 1-196

TangloppeTorsdag: Kulerunde Stegocephalidae Dana, 1852

En ansamling Stegocephalidae fra en sledestasjon i Nordnorge. Foto: K. Kongshavn

Vi pleier å si at amfipodene er sideveis flatklemt (lateralt sammentrykte). Det er en sannhet med modifikasjoner for en av gruppene. Stegogephalidene er nesten runde kuler. De er lett gjenkjenbare som gruppe, familien er en av de som er beskrevet tidlig (Dana, 1852), men å komme seg videre til art er ikke så enkelt. Det er 109 arter å velge mellom i familien, de er fordelt i alle verdenshav, og alle er forbundet på en eller annen måte med havbunnen. Hvis vi bare konsentrerer oss om arter funnet i Nord-øst Atlanteren slipper vi unna med 19 arter (7 av disse er hittil registrert innen Norske farvann)

En del av Stegocephalidene finner vi sittende på eller inni fastsittende dyr på havbunnen – for eksempel svamp, anemoner og koraller. Hvis vi ser på munndelene, er de store i forhold til kroppen, og i motsetning til mange andre amfipoders munndeler er de knallharde og spisse – så i en del litteratur blir de beskrevet som “parasitt-aktige”. Kanskje det er sånn at de kan stikke hull på eller bite seg inn i andre dyr mens de enda lever? Det ville muligens forklare hvorfor noen av artene trives så godt med å bo med andre arter.

Stegocephalidae fra inni en svamp. Funnet i Antarktis. Foto: C. dUdekem dAcoz

Mange av Stegocephalidene er dyphavsarter, og er derfor også forbundet med kaldt vann. Det gjelder også våre norske arter, som for eksemper Andaniexis lupus, og den store og karakteristiske Stegocephalus inflatus som ble beskrevet av Krøyer så tidlig som i 1842. Navnet inflatus peker på at den er oppblåst, og akkurat denne arten er av de mest kuleformete, og den største vi har i våre farvann. Den er karakteristisk brun-og-hvitstripet. Vi finner den ofte i litt dype prøver fra Nordnorge og Svalbard, og den kan være mer enn 2 cm lang!

Hvorfor vet vi ikke mer om hvordan de forskjellige artene lever? De fleste artene vi har navn på av amfipoder vet vi ikke så mye mer enn navnet på. Nå strekkoder vi så mange Stegocephalidae vi kommer over, slik at vi kan sjekke om navnene vi setter på dem stemmer med arter. Det er et startpunkt: uten navn kan vi i alle fall ikke si så mye mer – fo da vet vi ikke hvem vi finner noe mer ut om. For Stegocephalidene har vi kommet til navn på mange, og veldig lite mer om de fleste. Det hjelper ikke at de holder til så langt nede i havet, og kanskje også inni andre dyr. Hvorfor der er så kulerunde vet vi heller ikke helt. Men dyr som er glatte på utsiden har lettere for å gli inni andre…

 

Anne Helene


Litteratur:

Berge J, Vader W (2001) Revision of the amphipod (Crustacea) family Stegocephalidae. Zoological Journal of the Linnean Society 133: 531-592.

Vader W (1984) Notes on Norwegian Marine Amphipoda 7. Amphipod associates of Geodia sponges in western Norway. Fauna Norvegica ser A 5: 14-16.