Monthly Archives: December 2016

TangloppeTorsdag: Med opprinnelsessted sørishavet?

Årets siste tangloppetorsdag starter med et bilde av en av de vakre, lett gjenkjennelige artene vi har i norske farvann: Epimeria cornigera (Fabricius, 1776). Dette er en av de “piggete” artene – og i tillegg har den en flott rødfarge. I motsetning til de fleste andre sterkt fargete amfipodene, beholder den til og med fargen sin etter at den er lagt på sprit i våre samlinger! Ikke rart både garvete forskere og glade amatører liker denne krabaten!

Levende Epimeria cornigera fra Trondheimsfjorden. Foto: F Pleijel

Levende Epimeria cornigera fra Trondheimsfjorden. Foto: F Pleijel

I våre farvann kan vi finne fire arter innen slekten Epimeria: E. cornigera, E. loricata, E. parasitica, E. tuberculata. Epimeria loricata finner vi også rundt Svalbard.  Alle artene er beskrevet tidlig, og er med i Sars sine fine illustrasjoner. Han må også ha blitt fasinert av fargen, for i Sars sin personlige utgave av amfipodebindet av The Crustacea of Norway har han brukt akvarellmaling og fargelagt en del av bildene sine – blandt dem alle Epimeria-artene.


Når vi skal identifisere disse amfipodene, ser vi etter coxalplatene til bein 4 og 5. Dette er det øverste leddet – det so ofte lager sidekanter på amfipodene. Hos slekten Epimeria stikker disse ut i to spisser som sammen danner en halvmåne. Det er nok en beskyttelsesmekanisme å være piggete – Epimeria-arter har i tillegg ganske tykt skall, så det er sikkert ikke så lett å spise dem selv om en liker at det stikker i munnen..

Epimeria loricata (etter oppbevaring på sprit). Foto: K Kongshavn

Epimeria loricata (etter oppbevaring på sprit). Foto: K Kongshavn

Slekten Epimeria er en av de amfipodeslektene som understøtter teorien om at de opprinnelige amfipodene holdt til rundt det området vi i dag tenker på som sørishavet. Undersøkelser av Epimeria fra områdene rundt Antarktis viser at det er en liten overflod av arter der, i motsetning til de mye færre artene innen slekten lengre nordover.

Områdene rundt Antarktis har på mange måter blitt undersøkt mer systematisk enn våre nære områder – når det gjelder biosystematikk på bunnlevende organismer. Dette er nok fordi det har vært flere store prosjekter som har fokusert på nettop disse detaljene. Slik har man blant annet funnet ut at Epimeria fra sørlige kalde hav består av flere grupper arter, disse gruppene er ganske langt fra hverandre hvis vi ser på arvematerialet (DNA). Innen hver gruppe finnes det flere arter som er mye nærmere hverandre genetisk, men som fremdeles er egne arter.

Hvordan de nord-Atlantiske Epimeria-artene vil passe inn i dette mønsteret vet vi ikke helt enda. Men vi har begynt å undersøke dette. NorAmph samarbeider med et tyskledet prosjekt som har materiale fra havområdene rundt Island. Sammen vil vi se nærmere på akkurat Epimeria fra våre nordlige kalde farvann. Hvis du følger med TangloppeTorsdag videre i 2017, kan det hende vi finner noen svar?

Levende Epimeria cornigera fra Trondheimsfjorden. Foto: F Pleijel

Levende Epimeria cornigera fra Trondheimsfjorden. Foto: F Pleijel

Godt nyttår – både til deg og til alle amfipodene!

Anne Helene


Litteratur:

Lecointre G, Améziane N et al (2013) Is the Species Flock Concept Operational? The Antarctic Shelf Case. PLoS ONE 8, e68767.

Lörz AN, Maas EW, Linse K, Coleman CO (2009) Do circum-Antarctic species exist in peracarid Amphipoda? A case study in the genus Epimeria Costa, 1851 (Crustacea, Peracarida, Epimeriidae).  ZooKeys, 1-36.

Sars GO (1895) The Crustacea of Norway. Vol 1: Amphipoda. Alb Cammermeyers Forlag, Christiania.

Verheye M,  Backeljau T, dUdekem dAcoz C (2016) Looking beneath the tip of the iceberg: diversification of the genus Epimeria on the Antactic shelf (Crustacea, Amphipoda). Polar Biology 39, 925-945.

TangloppeTordag: i et hus inni huset…

Ved første øyekast så det ut som en stor tangklase på dekk. Men det kunne jo ikke stemme – prøven kom fra en trekantskrape som hadde samlet fra 120 til 80 meters dyp. Vi var langs Svalbards østkyst – i Heleysundet mellom Spistbergenøya og Barentsøya. Heleysundet er beryktet blant ishavskapteinene – tidevannstrømmene er så sterke der at det er svært sjelden vi får gå gjennom – kun på strømsnu, sier kapteinene jeg har seilt med. Yttest i sundet – nordover mot Hinlopen fikk jeg mast meg til en skrape – og så kom altså denne “tangklasen opp”.

Sortering av hardbunnsprøven fra Heleysundet, ombord F/F Helmer Hanssen med UNIS-studenter og lærere. Foto: AHS Tandberg

Sortering av hardbunnsprøven fra Heleysundet, ombord F/F Helmer Hanssen med UNIS-studenter og lærere. Foto: AHS Tandberg

Det var selvsagt ikke tang. Securiflustra securifrons (Pallas, 1766) er en bryozoa (mosdyr) – et kolonidannende filsterspisende lite dyr (hvert individ er rundt 1 mm stort). De lager kolonier som står på hard bunn, og for å få tak i så mye næring som mulig, har de organisert seg i noe som til forveklsling kan ligne en tangklase. Centimeter brede “bånd” forgreiner seg utover, slik at så mange individer som mulig kan få spredd locoforene sine (tentakkelkronen de spiser med) ut mot vannstrømmene. Heleysundet med sin sterke strøm må være et lite paradis.

Musculus disors mellom "greinene" på Securiflustra securifrons. Foto: AHS Tandberg

Musculus disors mellom “greinene” på Securiflustra securifrons. Foto: AHS Tandberg

Mens vi stop rundt sorteringsbordet på dekk og prøvde å finne ut om det var noe mer i prøven vår enn bryozoa (det er alltid mye spennende i et hardbunnstekk!), kjente vi at det var noen harde klumper i klasene – ofte der to “grener” delte seg. Noe som så ut som små, brune, hårete baller satt fast på “ikke-trang-klasene” våre. Dette skulle vise seg å være bivalven (muslingen) Musculus discors (L. 1767), det hårete utseendet var fordi mange hadde pakket seg inn med byssustrådene sine. Muslinger lager byssustråder for å henge seg fast i underlaget de vil bo på – du har sikkert sett den lille hårtusten når du har spist blåskjell. I dette tilfellet fikk M. discors både fastholding og kanskje litt kamuflasje fra trådene – det var i alle fall vanskelig å legge merke til dem uten å kjenne klumpene. Litt spennende er det jo å finne slike gjemte skatter, så snart stod alle rundt sorteringsbordet og befølte bryozoene på jakt etter muslinger.

Musculus discors. Foto: AHS Tandberg

Musculus discors. Foto: AHS Tandberg

Musculus discors ligner ganske mye på blåskjell – de er også i samme familie som dem. De har litt andre tegninger på skjellet, og akkurat denne arten har i tillegg en grønn-brun farge, mens andre Musculus arter kan være rent brune, eller svarte, for eksempel. Denne gruppen muslinger spiser ved å filtrere vann gjennom seg. De har to åpninger inn i sitt myke indre: en der vannet bli sugd inn, og en der ferdigfiltrert vann og avfall bli spyttet ut. Når vannet kommer over gjellene fanges matpartikler som små planktonalger opp, og transporteres ned mot munnen og magen, som er ved hengselet på skjellet. Vi la de fleste av skjellene vi fant i et lite akvarium med sjøvann, og satte det i et kjølerom ved laben.

Et akvarium fullt av Musculus discors. Legg merke til sifonene som pumper vann for muslingen. Foto: AHS Tandberg

Et akvarium fullt av Musculus discors. Legg merke til sifonene som pumper vann for muslingen. Foto: AHS Tandberg

25 år før vi var på tokt på østsiden av Svalbard var det et annet tokt som gikk til Bjørnøya. De samlet også inn Musculus discors, og fant ut at de skulle se inni dem. Der fant de liv! Bevepnet med kunnskapen fra deres artikkel (Vader og Beehler, 1983), åpnet vi noen av våre muslinger for å se om vi også kunne finne noe. Vi fant også liv. Masse liv. Spennende liv. Vi fant (som Vader og Beehler før oss) amfipoder som levde i beste velgående inne i muslingene. Dette var så spennende at vi åpnet nesten 300 muslinger for å se om vi kunne si noe ordentlig om disse amfipodene.

VI fant to veldig forskjellige arter amfipoder assosiert med Musculus discors. Den største arten var Anonyx affinis Ohlin, 1895. Dette er en Lysianassidae, og som de fleste av sine nærmeste slektninger, liker den å spise kjøtt. Vi tror nok at den spiser litt av muslingen den besøker, og derfor tror vi også at den nok er mer på besøk enn at den lever inni muslingen hele tiden. Så mange som 14% av alle muslingene hadde A. affinis i seg.

Korvetten La Recherche i isen ved Bjørnøya. Tegning av ekspedisjonens kunstner: August Mayer.

Korvetten La Recherche i isen ved Bjørnøya. Tegning av ekspedisjonens kunstner: August Mayer.

Den andre arten amfipode vi fant inni Musculus discors, tror vi derimot at lever hele livet sitt inni skjellet. Dette er Metopa glacialis (Krøyer, 1842). Rett nok beskrev Krøyer den fra et enkelt individ som virket som om det levde fritt, fra en trekantskrape som forsknigstoktet til krovetten La Recherche samlet med på sørvestsiden av Svalbard i 1839. Krepsdyrprøvene kom til museet i København, der Henrik Krøyer så gjennom dem og beskrev flere nye arter. Det var bare det at hans bind av de vitenskapelige resultatene fra La Recherche aldri ble publisert – pengene til ekspedisjonen strakk ikke til. Dette har ført til en rekke problemer forbundet med de artene som Krøyer trodde at han hadde sent til publisering i dette bindet, men heldigvis finnes typene til disse artene i Zoologisk Museum i København sine samlinger. Metopa glacialis er en av disse artene. Etter Krøyers (ikke)publisering av arten, har den svært sjelden blitt funnet, og de få gangene den er funnet, har den vært inne i Musculus discors. I hele 75% av våre muslinger fra Heleysundet bodde det M. glacialis.


Men hva gjør en amfipode inne i en musling? Det mest innlysende svaret er at den spiser. Og den spiser godt, og mye. Vi undersøkte mageinnholdet fra både muslingen Musculus discors og amfipoden Metopa glacialis, og vi fant ut at de spiste hver sin del av planktonalgene som finnes i vannet som pumpes gjennom muslingen. M. discors spiser diatomeer, mens M. glacialis spiser flagellater. Metopa glacialis sitter på og inni gjellene til Musculus discors, og der er det bare å ta for seg. Snakk om å sitte rett i matfatet!

Den andre tingen amfipodene har i muslingen er det vi kan kalle en sikker bolig. Det er vanskelig for predatorer å komme til – vi tror ikke at Anonyx affinis spiser Metopa glacialis, men heller Musculus discors. Dette gjør at M. glacialis kan ha en litt uvanlig strategi for å få barn. Det vanlige i arktisk vann er at amfipodene får et eneste kull med barn – og at disse kommer fra få og store egg. Det tar vanligvis lang tid fra eggene befruktes til de små juvenile kravler ut til sitt eget liv – de må være store og tøffe nok til å tåle den harde virkeligheten kaldt vann og sesongstyrt mat er.

En familie Metopa glacialis inni et Musculus discors. Stor pil på moren, små piler til ungene. Muslingen er 31 mm lang. Foto: AHS Tandberg

En familie Metopa glacialis inni et Musculus discors. Stor pil på moren, små piler til ungene. Muslingen er 31 mm lang. Foto: AHS Tandberg

Metopa glacialis gjør dette på sin egen måte. Når vi åpnet skjellene, var det nesten så det rant over av barn i enkelte Musculus – men det var aldri mer enn et par voksne. Det kan rett og slett virke som om det er familieliv inne i muslingen. Ved nærmere studier fant vi ut at Metopa glacialis kan få opptil 20 barn på et kull, og at det kunne være opp til to kull og en “gravid mamma” (en voksen hunn med egg) i en musling! Da er det trangt om plassen. Når vi så nøyere på hvor i muslingen de forskjellige holdt til, var alltid ungene plassert pent innimellom gjelledelene, mens foreldrene kunne være litt rundt omkring. Det er tydelig at foreldrene plasserer ungene sine en plass der de kan finne mye mat så de kan vokse seg sterke.  Dette kaller vi ofte utvidet ungepass (“extended parental care”) – og det har ikke blitt vist særlig ofte hos amfipodene. Det kan selvsagt være fordi det er vanskelig å vise, og vi kan innvende at vi heller ikke helt har vist det, bare kommet med indikasjoner på at det kan være slik. Sånn er det ofte i forskningen.

Anonyx affinis stikker ut av den øvre halvdelen og Metopa glacialis ligger i den nedre halvdelen av en Musculus discors. Foto: AHS Tandberg

Anonyx affinis stikker ut av den øvre halvdelen og Metopa glacialis ligger i den nedre halvdelen av en Musculus discors. Foto: AHS Tandberg

Det vi kan si med sikkerhet er at samboerskapet Securiflustra-Musculus-Metopa (og Anonyx) er komplisert, og sikkert til tider litt overfylt. Kanskje slamrer de halvvoksne Metopaene som fremdeles bor hjemme litt ekstra med dørene når mamma nok en gang skal ha barn, eller kanskje sloss småsøsknene litt om plassen? Det kan minne om russiske matrusjka-dukker. Amfipodene som bor inni muslinger som sitter “inni” bryozoer har fått meg til å tenke på et dikt André Bjerke skrev i 1960.

I dukkehuset i Dukkevei 2
skal verdens heldigste dukke få bo.
Med lampe i taket og bittesmå stoler
og blomstervase til dukke-fioler,
og flaggstang med flagg og en dukke-garasje,
og kjøkken med godter og kake og brus
og innerst i hjørnet i første etasje
skal dukken til dukken ha dukkehus.

I et hus inni huset i Dukkevei 2
skal den knøttlille dukken til dukken få bo
og ha eget bad og en dukke-do.
Og teppe på gulvet og hyller med bøker,
og askebeger til dukker som røker,
og vinduer oppe og vinduer nede,
et spennende loft og en kjeller med mus.
Og innerst så lite at ingen kan se det- skal dukken til dukken – ha dukkehus.
ANDRE BJERKE

Juleferien står for døren, med julebesøk av besteforeldre, gamle tanter og unge søskenbarn. Det kan bli fullt hos de fleste, men “the more, the merrier” gjelder kanskje i julen? Når du føler det blir litt mye og trangt kan du trøste deg med at Metopa glacialis nok har det endra trangere i sitt hus. God jul!

Anne Helene

(PS: this post can be read in english as part of our adventcalendar.)


Litteratur:

Just J (1983) Anonyx affinis (Crust., Amphipoda: Lysianassidae), commensal in the bivalve Musculus laevigatus, with notes on Metopa glacialis (Amphipoda: Stenothoidae). Astarte 12, 69-74

Tandberg AHS, Schander C, Pleijel F (2010) First record of the association between the amphipod Metopa alderii and the bivalve Musculus. Marine Biodiversity Records 3:e5 doi:10.1017/S1755267209991102

Tandberg AHS, Vader W, Berge J (2010) Studies on the association of Metopa glacialis (Amphipoda, Crustacea) and Musculus discors (Mollusca, Mytilidae). Polar Biology 33, 1407-1418

Vader W, Beehler CL (1983) Metopa glacialis (Amphipoda, Stenothoidae) in the Barents and Beaufort Seas, and its association with the lamellibranchs Musculus niger and M. discors s. l. Astarte 12:57–61

TangloppeTorsdag: svømme, blinke? Lysende amfipoder.

De som følger med på adventskalenderen vår har kanskje sett at vi den siste tiden har skrevet mye om lys og mørke. Det blir gjerne sånn når adventstiden er over oss, og den nordlige halvkule tipper litt bort fra solen. Vi pynter med stjerner eller blinkende lys i og rundt hjemmene våre, kanskje for å si at vi er hjemme og gjerne vil ha koselig besøk – eller kanskje for å jage bort de som ikke liker julepynting like godt som vi selv?

I det mørke, dype havet blinker det hele året. Mange dyr og en del alger har utviklet det vi kaller bioluminiscens – det beste norske ordet er kanskje “morild” (“flammer i havet”, hvis vi skal tolke direkte). Det er mange og gode grunner til å lage sitt eget lys hvis man bor i dyphavet, så mange at denne egenskapen har utviklet seg flere ganger og hos forskjellige organismegrupper. Dette kan vi se fordi det er mange forskjellige biokjemiske reaksjoner som lager lys i havet.

Morild (dinoflagellater) synlig gjennom havisen. Foto Geir Johnsen, NTNU

Morild (dinoflagellater) synlig gjennom havisen. Foto Geir Johnsen, NTNU

Det er ikke mange vi vet om som lager lys i de delene av havet som er lyse – dette er normalt dyp ned til rundt 200m. Mellom 200 og 1000m har vi en skumringssone, og her er det en del som blinker. Jo dypere vi kommer, dess flere organismer trenger å lage eget lys. Denne “regelen” har et ganske kjent unntak: de algene som dupper i havoverflaten om som vi om sommeren ser som morild – når det glitrer rundt årene om natten når vi skal lyse etter krabbe, eller det blinker i kjølvannet av store båter. Det kan virke som om fysisk forstyrrelse (at vi “dytter” på dem) av disse algene setter igang lysing, men vi vet ikke hvorfor det gjør det. Det kan se ut som om det er en effekt som bare kommer om natten, men vi vet ikke hvorfor det heller. Det er kanskje ikke noe vits i å lyse om dagen? Les mer om dette i Endre sin julekalenderluke .

Bioluminiserende sky etter en krill som har stukket av. Foto: Geir Johnsen, NTNU

Bioluminiserende sky etter en krill som har stukket av. Foto: Geir Johnsen, NTNU

Til vanlig observeres og måles bioluminisens ved hjelp av undervannsroboter og kule kamera som vi sender ned i dypet. Men – det å lage lys viser seg å henge sammen med å holde til en plass der det er mørkt – og det trenger nødvendigvis ikke å være i de store dypene. Forrige TangloppeTorsdag handlet om polarnatten, og i det mørket som er i hele havet (månelyset lager det skumringslyst og ikke dagslyst i havet), flytter de prosessene vi ellers for det meste ser i det mørke dyphavet seg til de mørke øvre vannlagene. Da kan vi plutselig observere blinking og lysing mens vi dykker, eller til og med fra overflaten av vannet og isen.

Forskningsprosjektet Mare Incognitum har undersøkt blant annet de lysende organismene i polarnatten. De fant ut at det er dinoflagellater som er hovedlyslageren i de øverste 20-40 metrene av havet, før copepodene Metridia longa tar over ansvaret for det meste lyset. I januar er 80 m dyp den plassen der det lages mest lys, før det avtar en smule lengre ned. Ved hjelp av å analysere bølgelengden og intensiteten på blinkene, klarte forskerne å skille mellom de forskjellige organismene som laget lyset – det er som om de alle har et lys-fingeravtrykk som er forskjellig fra de andre.

Dybdevariasjon av lysmengde og opphavsorganismer til lyset fra Kongsfjorden. Figur 3 fra Cronin HA et al 2016

Dybdevariasjon av lysmengde og opphavsorganismer til lyset fra Kongsfjorden. Figur 3 fra Cronin HA et al 2016

Det finnes mange grunner til å lage sitt eget lys – dette har blitt satt i system av Haddock (2010) – og vi kan dele det i tre hovedgrunner: forsvar, angrep og kontaktsøking. Angrep er kanskje det som er mest kjent: lampettfiskens lampe som lokker til seg intetanende små byttedyr som lurer på hva dette er for noe (eller som bare lyser opp området rundt seg for å få god oversikt over hvem den vil spise?). Forsvar kan gjøres på mange måter ved hjelp av lysproduksjon: det kan skremme en angriper, en kan gi slipp på et lysende eller blinkende lem for å forvirre den som vil spise resten av den, en del slipper ut vagt lysende væske mens de stikker av, og hos noen som lever i grupper blinker de ytterste i flokken når en fiende nærmer seg. Blinking eller vedvarende lysing kan også brukes til å skaffe seg en partner – det kan sammenlignes med dyphavets lange, tunge blink over baren en sen nattetime. Kanskje allerhelst er det som det korte skjørtet eller den veldig åpne skjortehalsen: den blinkende flørteren viser frem sitt gode (genetiske) materiale…

Forskjellig bruk av bioluminisens. Figur 7 fra Haddock SHD et al (2010), omformet av Ola Reibo for å reflektere arktisk bioluminisens til utstillingen Polarnatt 2015.

Forskjellig bruk av bioluminisens. Figur 7 fra Haddock SHD et al (2010), omformet av Ola Reibo for å reflektere arktisk bioluminisens til utstillingen Polarnatt 2015.

Hos krepsdyrene kan det se ut som om bioluminisens har utviklet seg flere ganger – i motsetning til mange av de andre dyregruppene finnes det flere biokjemiske lysløsninger innen denne vide dyregruppen.  Amfipodeslekten Scina (i Norge finnes Scina borealis (Sars, 1883)) er Hyperiidaer (de med de store øynene til vanlig) der alle produserer bioluminisens. Dette er for det meste en pelagisk gruppe (de svømmer i havet istedenfor å vandre på havbunnen), det er flest lysende marine dyr som svømmer i motsetning til å sitte på havbunnen.

Scina borealis (Sars, 1883) figur 8 fra GO Sars, 1895. De gule stjernene er lagt til for å vise hvor de lysproduserende cellene er.

Scina borealis (Sars, 1883) figur 8 fra GO Sars, 1895. De gule stjernene er lagt til for å vise hvor de lysproduserende cellene er.

På seint 60-tall utførte forskeren P Herring en del forsøk med flere arter Scina (og en del andre enkeltarter av amfipoder som var kjent som bioluminiserende) for å finne ut hvor på kroppen de laget lys, og hvordan lyset ble uttrykt (blinket det, var det sterkt, skjedde andre ting samt idig?). Han hadde levende amfipoder i akvarier, og så tilsatte han små mengder kjemikalier som var kjent som lys-induserende for å se hva som skjedde. Av og til brukte han også små elektriske sjokk for å se om det ville gi en effekt. Han fant ut at Scina har photocytter (lyslagende celler) på antennene, på det lange 5 beinparet, og flere steder på bakkroppen. Disse områdene lager raske, sterke fluoriserende blå lysglimt som pulserer uten noen rytme i rundt 10 sekunder. Etter blinkingen spyr de opp en blåfarget (men ikke lysende) væske som tåkelegger vannet rundt dem. Hele tiden mens dette pågår, stritter de med antennene og bakkroppen i en stiv forsvarsstilling. Med slike observasjoner kan vi nok rimelig trygt si at Scina bruker bioluminisens til å forsvare seg mot predatorer – kanskje både til å skremme og som en innbruddsalarm?

Anne Helene


Litteratur:

Cronin HA, Cohen JH, Berge J, Johnsen G, Moline MA (2016) Bioluminescence as an ecological factor during high Arctic polar night. Scientific Reports/Nature 6, article 36374 (DOI: 10.1038/srep36374)

Haddock SHD, Moline MA, Case JF (2010) Bioluminescence in the Sea. Annual Review of Marine Science 2, 443-493

Herring PJ (1981) Studies on bioluminescent marine amphipods. Journal of the Marine biological Association of the United Kingdoms 61, 161-176.

Johnsen G, Candeloro M, Berge J, Moline MA (2014) Glowing in the dark: Discriminating patterns of bioluminescence from different taxa during the Arctic polar night. Polar Biology 37, 707-713.

Evertebratjulekalender

Om du synes julefreden har senket seg i overkant tidlig her på bloggen (med hederlig unntak av Torsdagstangloppene som går som vanlig), så skyldes det at vi kjører julekalender med en post hver dag på den engelske utgaven av bloggen.

Glimt i fra første halvdel av kalenderen

Glimt i fra første halvdel av kalenderen

Vi har vært innom – og kommer t il å fortsette med – et bredt utvalg av tema. Kalenderen finner du her, klikk deg inn her for å se!

TangloppeTorsdag: opp og ned med Themisto i mørket

Hvis vi skal nevne en faktor som styrer hvordan økosystemer fungerer, er ofte sollys det som først blir nevnt. Mest kanskje på grunn av at alle planter trenger sollys for å kunne fotosyntetisere, og planter er som oftest grunnsteinen i næringsnett. Men lyset er viktig for så mye mer enn fotosyntese! Veldig mange dyr bruker synet til å finne mat, eller for å oppdage fiender som har lyst til å spise dem. Slik kan det at det er lys, eller av og til at det ikke er så mye lys, avgjøre om du spiser eller blir spist.

Dette er ganske enkelt å diskutere når vi snakker om de som lever oppå landjorden – men hva med de dyrene (og plantene) som holder til i havet? Vi skal ikke veldig langt ned i havet før det er minimalt med lys som slipper ned – allerede ved 200m dyp er det “skumringstilstander”, og ved 1000m dyp må de siste lumenene gi opp. Alle som lever dypere enn 1000m må leve enten i blinde, eller lage sitt eget lys (det vil vi komme tilbake til siden i denne bloggen).

 

Themisto sp. mellom alle de mange mindre partiklene (dyr, planter og biter av dyr og planter). Lyset på bildet kommer fra dykkelykt og blits. Foto: Geir Johnsen, NTNU

Themisto sp. mellom alle de mange mindre partiklene (dyr, planter og biter av dyr og planter). Lyset på bildet kommer fra dykkelykt og blits. Foto: Geir Johnsen, NTNU

Det med lys og mørke varierer de fleste steder på jorden hvert døgn: vi har en lys periode (dag) når solen er over horisonten, og en mørk periode (natt) når solen er under horisonten. Dette utløser det vi av og til kaller “den største massebevegelsen på jorden” – Diel Vertical Migration (DVM) – på norsk vil det bli noe slikt som “horisontale døgnmigrasjoner”. Millioner av dyreplankton gjemmer seg i de dype, mørke delene av havet om dagen for å unngå å bli sett av de som vil spise dem, og så svømmer de opp i de øvre vannlagene om natten når det er mørkt for å spise på planteplanktonet som dupper nært vannflaten, der solen kan treffe dem slik at de kan fotosyntetisere. Dette skjer i alle verdenshavene, så om pendlerkøen på motorveien hver dag til og fra jobb virker stor kan du tenke på alle dyreplanktonene som går opp og ned hver dag…

 

Vi som lever så langt nord vet at det blir mørkere om vinteren – dagene blir kortere. Nord for polarsirkelen står ikke solen opp over horisonten, jo lengre nord vi kommer jo lengre blir perioden med mørketid. På Svalbard og lengre nord er solen så langt under horisonten at det ikke engang blir noe skumring midt på dagen: der er det polarnatt midt på vinteren. Dette er en tid vi lenge har trodd at var en dvaletid – som om livet i havet skulle ta like lang vinterferie som plantene under snøen?

Data-bilde fra den akustiske måleren som kartlegger vertikal migrasjon ved Svalbard. Figur 2 fra Last et al 2016.

Data-bilde fra den akustiske måleren som kartlegger vertikal migrasjon ved Svalbard. Figur 2 fra Last et al 2016.

Vi kunne ikke tatt mer feil! for mindre enn 10 år siden oppdaget forskere fra Universitetet i Tromsø, UNIS og det skotske marinforskningsinstituttet SAMS ved en tilfeldighet at det så ut som om dyreplanktonene fortsetter med DVM også i den aller mørkeste vinteren. Instrumenter som var satt ut for å måle slike bevegelser med det samme våren skulle sette igang ble satt ut om høsten for at alt skulle være klart i tide til de første solstrålene skulle smile på havisen – derfor målte de gjennom vinteren også.

Forskjellen på zooplankton migrasjonen om høsten (solstyrt), om vinteren (månestyrt) og om våren (solstyrt). Figur 3 fra Kintisch 2016

Forskjellen på zooplankton migrasjonen om høsten (solstyrt), om vinteren (månestyrt) og om våren (solstyrt). Figur 3 fra Kintisch 2016

Det skulle allikevel vise seg at det var en liten forskjell – istedenfor 24-timers sykluser på opp-og-ned bevegelser, var syklusene på 24.8 timer. Jorden snurrer rundt  på 24 timer (og noen millisekunder), så det kunne ikke være solen. Månen derimot! (Et månedøgn er 24.8 timer.) Videre undersøkelser, store prosjekter og nye kule instrumenter viser oss at det er månelyset som er så kraftig at dyreplanktonene fremdeles pendler til mørke spisenetter nær overflaten og til dype og mørke gjemmesteder når månen er oppe. Vi ser også at hver 29.5 dager (når det er fullmåne) er det en massevandring av dyreplankton til ca 50 meters dyp (se figuren med de store forskjellene på høst/vår og vinter), da er det tydeligvis ekstra ille med mye lys. Hvis vi går ordentlig inn i detaljene på datasettene kan vi se at det er forskjeller som kan spores tilbake til månefaser og månens høyde over horisonten – det kan se ut som om vinterpendling er mer komplisert enn sol-styrt pendling.

Fullmånen fotografert av mannskapet på Apollo 11, etter at de hadde vært på besøk. Foto: NASA, 1969

Fullmånen fotografert av mannskapet på Apollo 11, etter at de hadde vært på besøk. Foto: NASA, 1969

 

Havets varulv: Themisto sp. Legg merke til de store øynene... Foto: Geir Johnsen, NTNU

Havets varulv: Themisto sp. Legg merke til de store øynene… Foto: Geir Johnsen, NTNU

Det er ikke bare de minste og plantespisende dyreplanktonene som bruker store vertikale områder som bolig – der noen vil være, vil andre komme og spise dem. Den største mengden av dyr som er skyld i denne vertikale migrasjonen i arktis (de som gir størst utslag på måleapparatene) er de pelagiske jeger-amfipodene Themisto abyssorum og Themisto libellula (begge er storøyde hyperiide amfipoder, som bor midt i vannsøylen).

Grunnen til denne daglige svømmeturen er for å fange copepoder fra slekten Calanus. Calanus er veldig grei mat å spise – de har en stor fettsekk der de lagrer opplagsnæring, og så er de ikke veldig gode til å svømme fort. Calanus gresser på de mikroskopiske planteplanktonene live ved overflaten, og selv om det nesten ikke er planteplankton å finne i polarnatten, holder de ut gjennom vinteren, slik at de kan få avkom i det solen kommer opp og plantene kommer tilbake. Når vi analyserer mageinnholdet til Themisto som er fanget ved Svalbard i januar, ser vi at de er stappfulle av Calanus (det er i snitt plass til to Calanus finmarchicus i magen til en Themisto libellula). Dette viser oss at Themisto libellula og T. abyssorum også jakter med månelyset som hjelp. Noen av polarnattforskerne har begynt å kalle dem havets varulver, siden de blir så “blodtørste” i månelyset.

Themisto sp. på vei opp i den mørke natten for å jakte. Foto: Geir Johnsen, NTNU

Themisto sp. på vei opp i den mørke natten for å jakte. Foto: Geir Johnsen, NTNU

Men – hvis de er så så nifse og altetende som varulver, er det da noen grunn til å måtte svømme ned og gjenne seg når det blir altfor månelyst? Ingen er alene i et økosystem! Selv om man spiser grovt av noen, vil andre spise jegerne. Blant de som liker å spise storøyde Themisto er polartorsk (Boreogadus saida), små marine fugler som alkekonge (Alle alle) og en hel del selarter. Derfor går det opp og ned, for både den ene og den andre, også i den aller mørkeste polarnatten.

Anne Helene

(Denne blogposten er også dør 8 i evertebratsamlingens engelskspråklige adventskalender)


Litteratur:

Berge J, Cottier F, Last KS et al (2009) Diel vertical migration of Arctic zooplankton during the polar night. Biology Letters 5, 69-72.

Berge J, Renaud PE, Darnis G et al (2015) In the dark: A review of ecosystem processes during the Arctic polar night. Progress in Oceanography 139, 258-271.

Kintisch E (2016)  Voyage into darkness. Science 351, 1254-1257

Kraft A, Berge J, Varpe Ø, Falk-Petersen S (2013) Feeding in Arctic darkness: mid-winter diet of the pelagic amphipods Themisto abyssorum and T. libellula. Marine Biology 160, 241-248.

Last KS, Hobbs L, Berge J, Brierley AS, Cottier F (2016) Moonlight Drives Ocean-Scale Mass Vertical Migration of Zooplankton during the Arctic Winter. Current Biology 26, 244-251.